
Facebook
Sam Blackshear, Dino Distefano, Jules Villard

Building your own compositional static analyzer
with Infer.AI

Roadmap
Infer.AI architecture1

Building intraprocedural analyzers2

Building compositional interprocedural analyzers3

Need scalable, incremental tools
that are easy to extend

Need scalable, incremental tools
that are easy to extend

millions of
lines of code

Need scalable, incremental tools
that are easy to extend

millions of
lines of code

100K commits/
week

Need scalable, incremental tools
that are easy to extend

millions of
lines of code

100K commits/
week

Small team of
analysis experts

Recipe for a scalable/extensible analyzer

Procedure Summary

Frontend
Program

Scheduler + results database

Analyzer Plugins

Recipe for a scalable/extensible analyzer

Procedure Summary

Frontend

Don't want to change

Program

Scheduler + results database

Analyzer Plugins

Recipe for a scalable/extensible analyzer

Languages

Bug Types

Frontend

Analyses

Extensibility should
live here

Procedure Summary

Program

Scheduler + results database

Analyzer Plugins

Intraprocedural static analyzers are interpreters

InterpreterStateIN Instructions

StateOUT

Intraprocedural static analyzers are interpreters

InterpreterStateIN Instructions

StateOUT

Monolithic interpreters are hard to extend

InterpreterStateIN Instructions

StateOUT

Monolithic interpreters are hard to extend

New bug types

InterpreterStateIN Instructions

StateOUT

Monolithic interpreters are hard to extend

New bug types

New analyses

InterpreterStateIN Instructions

StateOUT

Monolithic interpreters are hard to extend

New bug types

New analyses

New languages

InterpreterStateIN Instructions

StateOUT

Separating instructions and commands

if (e) { ...

while (e) { ...

try { ...

x = y

x = call m()

x.f = y

x = y.f

Instructions

Separating instructions and commands

if (e) { ...

while (e) { ...

try { ...

x = y

x = call m()

x.f = y

x = y.f
Command

Instructions

Separating instructions and commands

if (e) { ...

while (e) { ...

try { ...

x = y

x = call m()

x.f = y

x = y.f
Command

Control-Flow Graph
(CFG)

Instructions

Splitting the interpreter

StateIN Command

StateOUT

Command interpreter

Splitting the interpreter

Control interpreter

StateIN Command

StateOUT

CFG

Command interpreter

Splitting the interpreter

Control interpreter

StateIN Command

StateOUT

CFG

Command interpreter

Splitting the interpreter

Control interpreter

StateIN Command

StateOUT

CFG

Command interpreter

Generalizing to multiple paths

STATE
if(...) {
command 1;
 STATE1
} else {
command 2;
 STATE2
}
[???]
command 3;

Generalizing to multiple paths

STATE
if(...) {
command 1;
 STATE1
} else {
command 2;
 STATE2
}
[???]
command 3;

Command 1 Command 2

State

Generalizing to multiple paths

STATE
if(...) {
command 1;
 STATE1
} else {
command 2;
 STATE2
}
[???]
command 3;

Command 1 Command 2

State

State 1 State 2

Command 3

[???]

Generalizing to multiple paths

STATE
if(...) {
command 1;
 STATE1
} else {
command 2;
 STATE2
}
[???]
command 3;

Command 1 Command 2

State

State 1 State 2

Command 3

[???]
JOINSTATE 1 STATE 2

WIDENSTATE 1 STATE 2

DOMAIN

Putting it all together

Control interpreter

Command interpreter Command

CFG

StateOUT

DOMAIN

New analyses

New bug types

StateIN

DOMAIN

Putting it all together

Control interpreter

Command interpreter Command

CFG New languages?

StateOUT

DOMAIN

New analyses

New bug types

StateIN

DOMAIN

Recipe for an scalable/extensible analyzer

Frontend
Program

Scheduler + results database

Analyzer Plugins

Procedure Summary

Recipe for an scalable/extensible analyzer

Frontend
Program

Scheduler + results database

Analyzer Plugins

Procedure Summary

Frontend

Load

Store

Call

AssumeCommand

CFG

OBJ - C

Infer Intermediate
Language

JAVAC++C???

Roadmap
Infer.AI architecture1

Building intraprocedural analyzers2

Building compositional interprocedural analyzers3

Roadmap

Building intraprocedural analyzers2

- Domains and domain combinators

- Transfer functions

- Control-flow graphs

- Putting it all together

Extensible analysis architecture

Frontend

Procedure Summary

Program

Scheduler + results database

Analyzer Plugins

Extensible analysis architecture

Frontend

Procedure Summary

Program

Scheduler + results database

Analyzer Plugins

Extensible analysis architecture

Abstract Interpreter

Transfer Functions Command

CFG

StateOUT

DOMAIN

StateIN

DOMAIN

Extensible analysis architecture

Abstract Interpreter

Transfer Functions Command

CFG

StateOUT

DOMAIN

StateIN

DOMAIN

Abstract domains are simple (AbstractDomain.ml)

Built-in domains: booleans

Built-in domains: booleans

- Boolean domains

[Jones and Muchnick POPL '79 Flow analysis and optimization of LISP-like structures]

x 2 V ar

f 2 Fld

e 2 ˆ
Exp ::= AP | ...

AP ::= x | AP . f | AP [e] | AP ⇤

Built-in domains: access paths

[Jones and Muchnick POPL '79 Flow analysis and optimization of LISP-like structures]

x 2 V ar

f 2 Fld

e 2 ˆ
Exp ::= AP | ...

x.f.gx.f

x[i].gx

- Examples:

AP ::= x | AP . f | AP [e] | AP ⇤

Built-in domains: access paths

[Jones and Muchnick POPL '79 Flow analysis and optimization of LISP-like structures]

x 2 V ar

f 2 Fld

e 2 ˆ
Exp ::= AP | ...

x.f.gx.f

x[i].gx

- Examples:

- Concretization: all addresses that may be read
via given path at current program point

AP ::= x | AP . f | AP [e] | AP ⇤

Built-in domains: access paths

- Excellent domain for prototyping; simple, very
close to concrete syntax

- Hard to handle aliasing well. Any two access
paths can alias if the types of the last accesses
are compatible:

x 2 V ar

f 2 Fld

e 2 ˆ
Exp ::= AP | ...

type(ap1) <: type(ap2) _ type(ap2) <: type(ap1)
[Jones and Muchnick POPL '79 Flow analysis and optimization of LISP-like structures]

AP ::= x | AP . f | AP [e] | AP ⇤

Built-in domains: access paths

Built-in domains: access paths (AccessPath.ml)

Built-in domains: access paths (AccessPath.ml)

- AccessPath.Raw.t (no length bounding)

Built-in domains: access paths (AccessPath.ml)

- AccessPath.Raw.t (no length bounding)

- AccessPath.t (with length bounding)

Built-in domains: access paths (AccessPath.ml)

- AccessPath.Raw.t (no length bounding)

- AccessPath.t (with length bounding)

- AccessPathDomains.Set (add-only set of paths
w/ normalization)

Built-in domains: access tree

x

*

f

g

h

Built-in domains: access tree

- Trie where nodes are bases (at level 0) or
accesses (at level n > 0)

x

*

f

g

h

Built-in domains: access tree

- Trie where nodes are bases (at level 0) or
accesses (at level n > 0)

x

*

f

g

h

- Sparse representation of set of access paths,
fast membership queries and....

Built-in domains: access tree

- Trie where nodes are bases (at level 0) or
accesses (at level n > 0)

x

*

f

g

h

- Sparse representation of set of access paths,
fast membership queries and....

- E.g., { x.f, x.f.g, x.h* } =

Built-in domains: access tree

x

*

f

g

h

T0

T1

Built-in domains: access tree

- Can associate abstract value with each node +
look it up fast

x

*

f

g

h

T0

T1

Built-in domains: access tree

- Can associate abstract value with each node +
look it up fast

x

*

f

g

h

T0

T1

- Used in taint analysis to remember execution
history for each memory location

Domain combinators facilitate building new domains

Domain combinators facilitate building new domains

- Powerset domains

Domain combinators facilitate building new domains

- Powerset domains

- Map domains

Domain combinators facilitate building new domains

Domain combinators facilitate building new domains

- Introducing dummy top/bottom values

Domain combinators facilitate building new domains

- Introducing dummy top/bottom values

- Cartesian product

Control flow graphs (CFGs)

Control flow graphs (CFGs)

- Cfg module (Cfg.ml) is a collection of CFGs for
every procedure in a file

Control flow graphs (CFGs)

- Cfg module (Cfg.ml) is a collection of CFGs for
every procedure in a file

- ProcCfg module limits view to a single
procedure (almost always what you want)

CFGs: customize view of control-flow (ProcCfg.ml)

CFGs: customize view of control-flow (ProcCfg.ml)

- With/without exceptional edges

CFGs: customize view of control-flow (ProcCfg.ml)

- With/without exceptional edges

- Backward analysis

CFGs: customize view of control-flow (ProcCfg.ml)

- With/without exceptional edges

- Backward analysis

- Changing granularity of blocks

Transfer functions (TransferFunctions.ml)

Putting it all together: simple liveness analysis
(Liveness.ml)

Putting it all together: simple liveness analysis
(Liveness.ml)

Putting it all together: simple liveness analysis
(Liveness.ml)

Analyzing procedures (AbstractInterpreter.ml)

Analyzing procedures (AbstractInterpreter.ml)

- Get invariant map from node id -> abstract state

Analyzing procedures (AbstractInterpreter.ml)

- Get invariant map from node id -> abstract state

- Just grab the postcondition

Hooking up your checker (RegisterCheckers.ml)

Hooking up your checker (RegisterCheckers.ml)

- Define entrypoint for analyzing single procedure

Hooking up your checker (RegisterCheckers.ml)

- Define entrypoint for analyzing single procedure

- Add entrypoint to RegisterCheckers module

Roadmap
Infer.AI architecture1

Building intraprocedural analyzers2

Building compositional interprocedural analyzers3

Roadmap

Building compositional interprocedural analyzers3

- Summaries

- Bottom-up modular/compositional analysis

- Real-world case study: thread-safety analysis

- Designing compositional domains

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

PMAIN

P1 P2

P3 P4

P5 P6

Bottom up modular/compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure once
using reverse postorder
scheduling

- Break call cycles by iterating
to fixed point

Modular: analyze one procedure (+ deps) at a time

Why modular + compositional definitions

Modular: analyze one procedure (+ deps) at a time

Compositional: summary for a procedure can be used in
all calling contexts

Why modular + compositional definitions

Modular: analyze one procedure (+ deps) at a time

Compositional: summary for a procedure can be used in
all calling contexts

No global view

Why modular + compositional definitions

Modular: analyze one procedure (+ deps) at a time

Compositional: summary for a procedure can be used in
all calling contexts

No global view

Never need to reanalyze procedure in new context

Why modular + compositional definitions

- Scalable: linear in the number of procedures

- Incremental: easy to transition from-scratch analysis
-> diff analysis

- Extensible: for new analysis, just need new domain +
transfer functions

Why modular + compositional matters

PMAIN

P1 P2

P3 P4

P5 P6

- Will have summary for callee
P6

- But don't know anything
about callers P2, P3

- Need to compute summary
usable in any calling context

Constraints of bottom-up analysis

PMAIN

P1 P2

P3 P4

P5 P6

- Will have summary for callee
P6

- But don't know anything
about callers P2, P3

- Need to compute summary
usable in any calling context

Constraints of bottom-up analysis

P2

P3 P4

P6

1. How do we combine the callee
summary with the current
state? (compositionality)

2. How do we represent state
from the caller during analysis?
(modularity)

Compositionality and modularity challenges

Brief detour into related work: modular/compositional
analysis

- "Symbolic relational separate analysis", introduced in
[Cousot and Cousot Static determination of
dynamic properties of recursive
procedures IFIP '77, Modular static program
analysis CC '02]

Brief detour into related work: modular/compositional
analysis

- Lots of papers use this approach for one kind of
analysis or another (too many to list here, just chase
reverse refs of Cousot paper)

- But few general guidelines for designing modular/
compositional domains...

Brief detour into related work: modular/compositional
analysis

- [Generating Precise and Concise
Procedure Summaries Yorsh et al. POPL '08]
shows how to design domains yielding summaries that
compose efficiently and precisely

- Complex domains assume existence of global points-to
analysis...

Brief detour into related work: modular/compositional
analysis

- Infer.AI doesn't impose any structure on summaries or
provide automatic summary instantiation

- Makes it easy to experiment with different ideas

- Informal tips on domain/summary design later in talk

Interprocedural analysis: defining summaries (Specs.ml)

Interprocedural analysis: defining summaries (Specs.ml)

- Add your summary type to master summary "payload"

Interprocedural analysis: defining summaries (Specs.ml)

- Add your summary type to master summary "payload"

- Define helper module for updating/reading payload with your summary

Interprocedural analysis: storing summaries

Interprocedural analysis: storing summaries

1. Convert postcondition to a summary (can be same)

Interprocedural analysis: storing summaries

1. Convert postcondition to a summary (can be same)
2. Call Summary.update_summary

Interprocedural analysis: using summaries

Interprocedural analysis: using summaries

- In transfer functions, just grab summary and use it

Roadmap

Building compositional interprocedural analyzers3

- Summaries

- Bottom-up modular/compositional analysis

- Real-world case study: thread-
safety analysis

- Designing compositional domains

Who wants concurrency analysis?

Who wants concurrency analysis?

Litho: framework for building Android UI

Fetch data

Measure/Layout

Draw

Determine size and position

Render and attach

Talk to network

Litho Component

Improve performance by moving layout to background

UI
thread

Background
thread(s)

Fetch data

Measure/Layout Draw

Improve performance by moving layout to background

UI
thread

Background
thread(s)

Fetch data

Measure/Layout Draw

Measure/Layout step needs to be thread-safe

Requirements for thread-safety analysis

Interprocedural

Requirements for thread-safety analysis

Interprocedural

Low annotation burden

Requirements for thread-safety analysis

Interprocedural

Modular

Compositional

Low annotation burden

How to trigger analysis: just add @ThreadSafe

How to trigger analysis: just add @ThreadSafe

How to trigger analysis: just add @ThreadSafe

Infer thread-safety analysis: what should it do?

Find data races:
two simultaneous accesses to the

same memory location
where at least one is a write.

Report data races with two warning types

Memory

Write outside sync

Unprotected write
warning (self-race)

Report data races with two warning types

Memory

Write outside sync

Unprotected write
warning (self-race)

Memory

Read Write

Read/write race
warning

Minimum viable analysis

- Analysis triggered by @ThreadSafe
annotation

- Assume all non-private methods in a single
@ThreadSafe class can run in parallel

- Report full call stack to any field accessed
outside of synchronization

How does it work?

ANALYZER PLUGIN

SUMMARY

METHOD

M

(1) Stack trace to access
(2) Lock(s) held
(3) Current thread
(4) Ownership info

Aggregate summaries for class and report

M1 SUMMARY

M2 SUMMARY

M3 SUMMARY

Aggregate summaries for class and report

Report when:

- reachable from non-
private method

- can find conflicting
access(es)

M1 SUMMARY

M2 SUMMARY

M3 SUMMARY

Start with a very simple domain

SUMMARY

Need to track:

- Name, location of accessed field. Use access
paths

- Locks. Use boolean for "must be held"

- Threads. Use boolean for "on main thread"

Computing summaries: simple intraprocedural case

private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1) }

Computing summaries: simple intraprocedural case

private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1) }

void setFWithSync(Obj o) {
 synchronized(o) {
 lockHeld
 o.f = ...;
 }
}
summ: { }

Applying summaries

private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1, _) }

private void callSetF(Obj x) {
 x.g = ... // line 2
 { (x.g, 2, _) }
 setF(x); // summ: { (o.f, 1, setF) }
 { (x.g, 2, _) } |_| project(summ, x) }
}
summ: { (x.g, 2, _), (x.f, 1, setF) }

Applying summaries

private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1, _) }

private void callSetF(Obj x) {
 x.g = ... // line 2
 { (x.g, 2, _) }
 setF(x); // summ: { (o.f, 1, setF) }
 { (x.g, 2, _) } |_| project(summ, x) }
}
summ: { (x.g, 2, _), (x.f, 1, setF) }

project binds callee formals to caller actuals

Applying summaries with join loses call stack
private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1, _) }

private void callSetF(Obj x) {
 x.g = ... // line 1
 setF(x); // summ: { (o.f, 1, setF) }
 someOtherFunction1()
}
summ: { (x.f, 1, setF), (x.g, 2, callSetF) }

Applying summaries with join loses call stack
private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1, _) }

private void callSetF(Obj x) {
 x.g = ... // line 1
 setF(x); // summ: { (o.f, 1, setF) }
 someOtherFunction1()
}
summ: { (x.f, 1, setF), (x.g, 2, callSetF) }

@ThreadSafe public void reportHere(Obj y) {
 callSetF(y); // summ: { (x.f, 1, setF), ... }
 someOtherFunction2()
}
summ: { (y.f, 1, setF), (y.g, 2, callSetF) }

Applying summaries with join loses call stack
private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, 1, _) }

private void callSetF(Obj x) {
 x.g = ... // line 1
 setF(x); // summ: { (o.f, 1, setF) }
 someOtherFunction1()
}
summ: { (x.f, 1, setF), (x.g, 2, callSetF) }

@ThreadSafe public void reportHere(Obj y) {
 callSetF(y); // summ: { (x.f, 1, setF), ... }
 someOtherFunction2()
}
summ: { (y.f, 1, setF), (y.g, 2, callSetF) }

Can't recover call stack!

Attempt 1: track call stack explicitly
private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, [(1, _)]) }

private void callSetF(Obj x) {
 setF(x); // line 2 summ: { (o.f, [(1, _)]) }
 { } |_| (2, _) :: project(summ, x)
 someOtherFunction1();
}
summ: { (x.f, [(2, _) :: (1, setF)] }

Attempt 1: track call stack explicitly
private void setF(Obj o) {
 o.f = ... // line 1
}
summ: { (o.f, [(1, _)]) }

private void callSetF(Obj x) {
 setF(x); // line 2 summ: { (o.f, [(1, _)]) }
 { } |_| (2, _) :: project(summ, x)
 someOtherFunction1();
}
summ: { (x.f, [(2, _) :: (1, setF)] }

public void publicMethod(Obj y) {
 callSetF(y); // line 3
 someOtherFunction2();
}
summ: { (y.f, [(3, _) :: (2, callSetF) :: (1, setF)] }

Explicit call stack tracking bloats summaries
private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { (o.f, [(1, _)]),
 o.g, [(2, _)] }

Explicit call stack tracking bloats summaries
private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { (o.f, [(1, _)]),
 o.g, [(2, _)] }

private void callSetF(Obj x) {
 setF(x); // line 2
 someOtherFunction1();
}
summ: { (x.f, [(2, _) :: (1, setF)],
 (x.g, [(2, _) :: (2, setF)}

Explicit call stack tracking bloats summaries
private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { (o.f, [(1, _)]),
 o.g, [(2, _)] }

private void callSetF(Obj x) {
 setF(x); // line 2
 someOtherFunction1();
}
summ: { (x.f, [(2, _) :: (1, setF)],
 (x.g, [(2, _) :: (2, setF)}

public void publicMethod(Obj y) {
 callSetF(y); // line 3
 someOtherFunction2();
}
summ: { (y.f, [(3, _) :: (2, callSetF) :: (1, setF)],
 (y.g, [(3, _) :: (2, callSetF) :: (2, setF)] }

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P6

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P611

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P611

1 + 2(1) = 3

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P611

1 + 2(1) = 31 + 2(1 + 1 + 3) = 10

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P611

1 + 2(1) = 31 + 2(1 + 1 + 3) = 10

1 + 2(3) = 7

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P611

1 + 2(1) = 31 + 2(1 + 1 + 3) = 10

1 + 2(10) = 20 1 + 2(3) = 7

Visualization of summary size explosion

PMAIN

P1 P2

P3 P4

P5 P611

1 + 2(1) = 31 + 2(1 + 1 + 3) = 10

1 + 2(10) = 20 1 + 2(3) = 7

1 + 2(20 + 7) = 55

private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { o.f, (1, _),
 o.g, (2, _) }

Solution: track last call that leads to access OOS

private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { o.f, (1, _),
 o.g, (2, _) }

private void callSetF(Obj o) {
 setF(o); // line 2
 someOtherFunction1();
}
summ: { (o.f, (2, setF),
 (o.g, (2, setF)}

Solution: track last call that leads to access OOS

private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { o.f, (1, _),
 o.g, (2, _) }

private void callSetF(Obj o) {
 setF(o); // line 2
 someOtherFunction1();
}
summ: { (o.f, (2, setF),
 (o.g, (2, setF)}

public void publicMethod(Obj o) {
 callSetF(o); // line 3
 someOtherFunction2();
}
summ: { (o.f, (3, callSetF),
 (o.g, (3, callSetF) }

Solution: track last call that leads to access OOS

private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { o.f, (1, _),
 o.g, (2, _) }

private void callSetF(Obj o) {
 setF(o); // line 2
 someOtherFunction1();
}
summ: { (o.f, (2, setF),
 (o.g, (2, setF)}

public void publicMethod(Obj o) {
 callSetF(o); // line 3
 someOtherFunction2();
}
summ: { (o.f, (3, callSetF),
 (o.g, (3, callSetF) }

Solution: track last call that leads to access OOS

private void setF(Obj o) {
 o.f = ... // line 1
 o.g = ...
}
summ: { o.f, (1, _),
 o.g, (2, _) }

private void callSetF(Obj o) {
 setF(o); // line 2
 someOtherFunction1();
}
summ: { (o.f, (2, setF),
 (o.g, (2, setF)}

public void publicMethod(Obj o) {
 callSetF(o); // line 3
 someOtherFunction2();
}
summ: { (o.f, (3, callSetF),
 (o.g, (3, callSetF) }

Solution: track last call that leads to access OOS

Recover call stack by
unrolling summaries

when reporting

P2

P3 P4

P6

1. How do we combine the
callee summary with the
current state?
(compositionality)

2. How do we represent state
from the caller during
analysis? (modularity)

Compositionality and modularity challenges

Mutating owned objects leads to false positives

Obj local = new Obj();
local.f = ... // safe write
global.g = ... // unsafe write

Mutating owned objects leads to false positives

Obj local = new Obj();
local.f = ... // safe write
global.g = ... // unsafe write

Obj objFactory() {
 return new Obj();
}

Obj local = objFactory();
local.f = ... // safe write

Mutating owned objects leads to false positives

Obj local = new Obj();
local.f = ... // safe write
global.g = ... // unsafe write

Obj objFactory() {
 return new Obj();
}

Obj local = objFactory();
local.f = ... // safe write

False positives

Mutating owned objects leads to false positives

Obj local = new Obj();
local.f = ... // safe write
global.g = ... // unsafe write

Obj objFactory() {
 return new Obj();
}

Obj local = objFactory();
local.f = ... // safe write

Local
ownership

Returning
ownership

False positives

Ownership can be conditional
private void writeF(Obj a) {
 a.f = ...
}

Obj o = new Obj();
writeF(o); // safe

Ownership can be conditional
private void writeF(Obj a) {
 a.f = ...
}

Obj o = new Obj();
writeF(o); // safe

Builder setX(X x) {
 this.x = x;
 return this;
}

new Builder().setX(x).setY(y); // safe
global.set(X).f = 7; // not safe

Ownership can be conditional
private void writeF(Obj a) {
 a.f = ...
}

Obj o = new Obj();
writeF(o); // safe

Builder setX(X x) {
 this.x = x;
 return this;
}

new Builder().setX(x).setY(y); // safe
global.set(X).f = 7; // not safe

False positives

Ownership can be conditional
private void writeF(Obj a) {
 a.f = ...
}

Obj o = new Obj();
writeF(o); // safe

Safe if formal is owned by caller

Returns ownership if formal is
owned by caller

Builder setX(X x) {
 this.x = x;
 return this;
}

new Builder().setX(x).setY(y); // safe
global.set(X).f = 7; // not safe

False positives

Track owned locals + owned return value

Obj local = new Obj();
owned(local), {}
local.f = ... // safe write
global.g = ... // unsafe write
owned(local), { (g, 3) }

Track owned locals + owned return value

Obj local = new Obj();
owned(local), {}
local.f = ... // safe write
global.g = ... // unsafe write
owned(local), { (g, 3) }

Obj objFactory() {
 return new Obj();
}
summ: owned(ret)

Obj local = objFactory();
owned(local)
local.f = ... // safe write

Need to track ownership in summaries

private void writeF(Obj a) {
 a.f = ...
}
summ: { (a.f, 1) if ¬owned(a) }

Obj o = new Obj();
owned(o)
writeF(o);
owned(o) |_| project(summ, o)
owned(o) ^ { (a.f, 1) if ¬owned(o) }
owned(o) ^ {}

Need to track ownership in summaries

Builder setX(X x) {
 this.x = x;
 return this;
}
summ: { (this.x if ¬owned(this) } ^
 owned(ret) if owned(this)
owned(a)
Builder b = a.setX(x);
owned(a) ^ project(summ, b, a, x)
owned(a) ^ owned(b) if owned(a)
 ^ { (this.x if ¬owned(a) }
 owned(b) if owned(a)
owned(a) ^ owned(b) ^ {}
b.setY(y); // safe by similar reasoning

Thread-safety analysis makes conversion faster/safer

- 100+ Litho components moved to
background layout with very few crashes

- Analysis enabled for all Litho component
diffs

- 300+ thread-safety regressions caught/
fixed on diffs

Minimum viable analysis -> formalism + sound tool

- Boolean lock abstraction -> infer permissions
associated with locks/threads (collaboration
with UCL)

- Access paths -> separation logic

- Proof of soundness

- Transfer formalism into tool

Roadmap

Building compositional interprocedural analyzers3

- Summaries

- Bottom-up modular/compositional analysis

- Real-world case study: thread-safety analysis

- Designing compositional domains

P2

P3 P4

P6

1. How do we represent state
from the caller during
analysis? (modularity)

2. How do we combine the callee
summary with the current
state? (compositionality)

Compositionality and modularity challenges

Modularity: representing state from the caller

e 2 Exp ::= x | ...

x, y 2 V ar

c 2 Cmd ::= e1 = e2 | y = call p(~x)

Modularity: representing state from the caller

e 2 Exp ::= x | ...

x, y 2 V ar

Add ghost variable for "footprint" value
read from environment

ˆ
V al ::= x̂ | FP (x)

c 2 Cmd ::= e1 = e2 | y = call p(~x)

Modularity: representing state from the caller

y /2 dom(�̂) �̂

0 = update(x, �̂, FP (y))

{�̂} x = y {�̂0}

Add ghost variable for "footprint" value
read from environment

ˆ
V al ::= x̂ | FP (x)

Modularity: representing state from the caller

y /2 dom(�̂) �̂

0 = update(x, �̂, FP (y))

{�̂} x = y {�̂0}

Add ghost variable for "footprint" value
read from environment

When we read a variable that isn't
defined, introduce ghost variable

ˆ
V al ::= x̂ | FP (x)

Modularity: representing state from the caller

y /2 dom(�̂) �̂

0 = update(x, �̂, FP (y))

{�̂} x = y {�̂0}

Add ghost variable for "footprint" value
read from environment

�̂[x̂ 7! FP (y)]Easiest implementation:

When we read a variable that isn't
defined, introduce ghost variable

ˆ
V al ::= x̂ | FP (x)

Modularity: representing state from the caller

- Summaries are parameterized by footprint values

- Generic: fully context-insensitive, but each caller
can fill in context when applying the summary

Modularity: representing state from the caller

- Summaries are parameterized by footprint values

- Generic: fully context-insensitive, but each caller
can fill in context when applying the summary

private void writeF(Obj a) {
 a.f = ...
}
summ: { (a.f, 1) if ¬owned(a) } =~
λ a. if owned(a) {} else { (a.f, 1) }

Modularity: representing state from the caller
y /2 dom(�̂) �̂

0 = update(x, �̂, FP (y))

{�̂} x = y {�̂0}

- Use for formals, globals, field/array reads from env

- Used in bi-abduction analysis [Compositional shape
analysis by means of bi-abduction, Calcagno et al.
JACM '11]

- Useful in subsequent Infer analyses: thread-safety,
Quandary taint analysis, ...

P2

P3 P4

P6

1. How do we represent state
from the caller during
analysis? (modularity)

2. How do we combine the callee
summary with the current
state? (compositionality)

Compositionality and modularity challenges

Compositionality: combining callee state with current state

�̂p : summary for procedure p

�̂

0
p = project(~x, y, �̂, �̂p) �̂

0 = �̂ � �̂

0
p

{�̂} y = call p(~x) {�̂0}

Compositionality: combining callee state with current state

Replace footprint variables in summary with actuals
Bind return value from summary to return variable

�̂p : summary for procedure p

�̂

0
p = project(~x, y, �̂, �̂p) �̂

0 = �̂ � �̂

0
p

{�̂} y = call p(~x) {�̂0}

�̂

0
p = project(~x, y, �̂, �̂p) �̂

0 = �̂ � �̂

0
p

{�̂} y = call p(~x) {�̂0}

Compositionality: combining callee state with current state

- Join for weak updates

- Append for traces

- Domain-specific operator for strong
updates...

�̂

0
p = project(~x, y, �̂, �̂p) �̂

0 = �̂ � �̂

0
p

{�̂} y = call p(~x) {�̂0}

Compositionality: combining callee state with current state

Example: interprocedural allocation counting

�̂ 2 Nat [{>}

{�̂} x = malloc(...) {�̂ + 1}

Overapproximate number of allocated heap cells

Example: interprocedural allocation counting

�̂ 2 Nat [{>}

Example: interprocedural allocation counting

�̂ 2 Nat [{>}

project(~x, y, �̂, �̂p) = �̂p

Example: interprocedural allocation counting

�̂ � �̂p = +>

�̂ 2 Nat [{>}

project(~x, y, �̂, �̂p) = �̂p

Example: interprocedural allocation counting

We don't care about caller state or
strong updates w.r.t callee. Easy.

�̂ � �̂p = +>

�̂ 2 Nat [{>}

project(~x, y, �̂, �̂p) = �̂p

Example: interprocedural escape analysis

ˆ
V al ::= x̂ | FP (x)

�̂ ✓ 2
ˆV al

Example: interprocedural escape analysis

ˆ
V al ::= x̂ | FP (x)

�̂ ✓ 2
ˆV al

Set of local variables holding addresses that may escape
scope of current function

Example: interprocedural escape analysis

ˆ
V al ::= x̂ | FP (x)

�̂ ✓ 2
ˆV al

Set of local variables holding addresses that may escape
scope of current function

y is local

{�̂} x.f = y {�̂ [{ŷ}}
y is formal

{�̂} x.f = y {�̂ [{FP (y)}}

Example: interprocedural escape analysis
ˆ

V al ::= x̂ | FP (x)

�̂ ✓ 2
ˆV al

project(~x, y, �̂, �̂p) =[

xi

{x̂
i

} if FP (x

i

) 2 �̂

p

^ x

i

is local

{FP (xi)} if FP (xi) 2 �̂p ^ xi is formal

{} otherwise

Example: interprocedural escape analysis
ˆ

V al ::= x̂ | FP (x)

�̂ ✓ 2
ˆV al

�̂ � �̂p = [

project(~x, y, �̂, �̂p) =[

xi

{x̂
i

} if FP (x

i

) 2 �̂

p

^ x

i

is local

{FP (xi)} if FP (xi) 2 �̂p ^ xi is formal

{} otherwise

Incrementalizing modular + compositional analyses is easy

- Each summary is a function of its instructions +
callee summaries

- Simple change propagation algorithm over call
graph works

- Can piggyback on incremental build systems for
free distributed cache

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

PMAIN

P1 P2

P3 P4

P5 P6

From-scratch analysis

Go bottom-up, compute summary for
all procedures.

Report all bugs found.

PMAIN

P1 P2

P3 P4

P5 P6

Incremental analysis: full

Change P2, P3

If P3 changes, need to re-analyze P1

If P1 or P2 changes, need to re-analyze
PMain

PMAIN

P1 P2

P3 P4

P5 P6

Incremental analysis: full

Change P2, P3

Re-analyze P2, P3

If P3 changes, need to re-analyze P1

If P1 or P2 changes, need to re-analyze
PMain

PMAIN

P1 P2

P3 P4

P5 P6

Incremental analysis: changed code only

Change P2, P3

Re-analyze P2, P3

Can stop there if we only care about
reporting errors in P2, P3

Why modular + compositional matters

- Scalable: linear in the number of procedures

- Incremental: easy to transition from-scratch analysis
-> diff analysis

- Extensible: for new analysis, just need new domain +
transfer functions

Conclusion: try out your analysis ideas in Infer

- Frontends for Java, C, C++, Obj-C

- Framework for writing modular/
compositional interprocedural analyses

- Your analyses can make real
programmers happy

fbinfer.com/docs/absint-framework.html

http://fbinfer.com

Lab exercise: building your own compositional analyzer

github.com/facebook/infer/infer/src/labs/lab.md

http://github.com/facebook/infer/infer/src/labs/la

