Absint.AbstractDomainmodule Types : sig ... endmodule type Comparable = sig ... endmodule type Disjunct = sig ... endmodule type S = sig ... endmodule type WithBottom = sig ... endA domain with an explicit bottom value
module type WithTop = sig ... endA domain with an explicit top value
module type WithBottomTop = sig ... endA domain with an explicit bottom and top values
module BottomLifted (Domain : S) : sig ... endCreate a domain with Bottom element from a pre-domain
module BottomLiftedUtils : sig ... endmodule TopLiftedUtils : sig ... endmodule BottomTopLifted (Domain : S) : WithBottomTopCreate a domain with Bottom and Top elements from a pre-domain
Cartesian product of two domains.
module PairWithBottom
(Domain1 : WithBottom)
(Domain2 : WithBottom) :
WithBottom with type t = Domain1.t * Domain2.tmodule Flat (V : IStdlib.PrettyPrintable.PrintableEquatableType) : sig ... endFlat abstract domain: Bottom, Top, and non-comparable elements in between
include sig ... endmodule Stacked
(Below : S)
(Val : S)
(Above : S) :
S with type t = (Below.t, Val.t, Above.t) Types.below_aboveStacked abstract domain: tagged union of Below, Val, and Above domains where all elements of Below are strictly smaller than all elements of Val which are strictly smaller than all elements of Above
module StackedUtils : sig ... endmodule MinReprSet
(Element : IStdlib.PrettyPrintable.PrintableOrderedType) :
sig ... endAbstracts a set of Elements by keeping its smallest representative only. The widening is terminating only if the order fulfills the descending chain condition.
module type FiniteSetS = sig ... endinclude sig ... endmodule FiniteSetOfPPSet
(PPSet : IStdlib.PrettyPrintable.PPSet) :
FiniteSetS with type t = PPSet.t with type elt = PPSet.eltLift a PPSet to a powerset domain ordered by subset. The elements of the set should be drawn from a *finite* collection of possible values, since the widening operator here is just union.
module FiniteSet
(Element : IStdlib.PrettyPrintable.PrintableOrderedType) :
FiniteSetS with type elt = Element.tLift a set to a powerset domain ordered by subset. The elements of the set should be drawn from a *finite* collection of possible values, since the widening operator here is just union.
module type InvertedSetS = sig ... endmodule InvertedSet
(Element : IStdlib.PrettyPrintable.PrintableOrderedType) :
InvertedSetS with type elt = Element.tLift a set to a powerset domain ordered by superset, so the join operator is intersection
module type MapS = sig ... endinclude sig ... endmodule MapOfPPMap
(PPMap : IStdlib.PrettyPrintable.PPMap)
(ValueDomain : S) :
MapS
with type key = PPMap.key
and type value = ValueDomain.t
and type t = ValueDomain.t PPMap.tMap domain ordered by union over the set of bindings, so the bottom element is the empty map. Every element implicitly maps to bottom unless it is explicitly bound to something else. Uses PPMap as the underlying map
module Map
(Key : IStdlib.PrettyPrintable.PrintableOrderedType)
(ValueDomain : S) :
MapS with type key = Key.t and type value = ValueDomain.tMap domain ordered by union over the set of bindings, so the bottom element is the empty map. Every element implicitly maps to bottom unless it is explicitly bound to something else
module type InvertedMapS = sig ... endmodule InvertedMap
(Key : IStdlib.PrettyPrintable.PrintableOrderedType)
(ValueDomain : S) :
InvertedMapS with type key = Key.t and type value = ValueDomain.tMap domain ordered by intersection over the set of bindings, so the top element is the empty map. Every element implictly maps to top unless it is explicitly bound to something else
module SafeInvertedMap
(Key : IStdlib.PrettyPrintable.PrintableOrderedType)
(ValueDomain : WithTop) :
InvertedMapS with type key = Key.t and type value = ValueDomain.tSimilar to InvertedMap but it guarantees that it has a canonical form. For example, both {a -> top_v} and empty represent the same abstract value top in InvertedMap, but in this implementation, top is always implemented as empty by not adding the top_v explicitly.
include sig ... endmodule FiniteMultiMap
(Key : IStdlib.PrettyPrintable.PrintableOrderedType)
(Value : IStdlib.PrettyPrintable.PrintableOrderedType) :
sig ... endmodule BooleanAnd : S with type t = boolBoolean domain ordered by p || ~q. Useful when you want a boolean that's true only when it's true in both conditional branches.
module BooleanOr : sig ... endBoolean domain ordered by ~p || q. Useful when you want a boolean that's true only when it's true in one conditional branch.
module type MaxCount = sig ... endmodule CountDomain (MaxCount : MaxCount) : sig ... endDomain keeping a non-negative count with a bounded maximum value. The count can be only incremented and decremented.
module DownwardIntDomain (MaxCount : MaxCount) : sig ... endDomain keeping a non-negative count with a bounded maximum value. join is minimum and top is zero.
module type NodeSetS =
FiniteSetS
with type elt = IR.Procdesc.Node.t
and type t = IR.Procdesc.NodeSet.t