Dominators.GDoms
type t = Absint.ProcCfg.MakeOcamlGraph(CFG).t
type vertex = Absint.ProcCfg.MakeOcamlGraph(CFG).V.t
module S : sig ... end
type idom = vertex -> vertex
type idoms = vertex -> vertex -> bool
type dom_tree = vertex -> vertex list
type dominators = vertex -> vertex list
type dom = vertex -> vertex -> bool
type sdom = vertex -> vertex -> bool
type dom_frontier = vertex -> vertex list
val compute_idom : t -> vertex -> vertex -> vertex
val dominators_to_dom : ('a -> S.t) -> vertex -> 'a -> bool
val dominators_to_sdom : (vertex -> S.t) -> vertex -> vertex -> bool
val dom_to_sdom : (vertex -> vertex -> bool) -> vertex -> vertex -> bool
val dominators_to_sdominators : (vertex -> S.t) -> vertex -> S.t
val dominators_to_idoms : (vertex -> S.t) -> vertex -> vertex -> bool
val dominators_to_dom_tree : t -> ?pred:(t -> vertex -> vertex list) -> (vertex -> S.t) -> vertex -> S.t
val idom_to_dom_tree : t -> (vertex -> vertex) -> vertex -> vertex list
val idom_to_idoms : idom -> vertex -> vertex -> bool
val compute_dom_frontier : t -> dom_tree -> idom -> vertex -> vertex list
val idom_to_dominators : ('a -> 'a) -> 'a -> 'a list
val idom_to_dom : (vertex -> vertex) -> vertex -> vertex -> bool
val dom_tree_to_nontrivial_dom : vertex -> dom_tree -> vertex list
val dom_tree_to_snontrivial_dom : vertex -> dom_tree -> S.t