Biabduction.Predicates
Offset for an lvalue.
type atom =
| Aeq of IR.Exp.t * IR.Exp.t
equality
*)| Aneq of IR.Exp.t * IR.Exp.t
disequality
*)| Apred of IR.PredSymb.t * IR.Exp.t list
predicate symbol applied to exps
*)| Anpred of IR.PredSymb.t * IR.Exp.t list
negated predicate symbol applied to exps
*)an atom is a pure atomic formula
val atom_has_local_addr : atom -> bool
The boolean is true when the pointer was dereferenced without testing for zero.
True when the value was obtained by doing case analysis on null in a procedure call.
type inst =
| Iabstraction
| Iactual_precondition
| Ialloc
| Iformal of zero_flag * null_case_flag
| Iinitial
| Ilookup
| Inone
| Inullify
| Irearrange of zero_flag * null_case_flag * int * IR.PredSymb.path_pos
| Itaint
| Iupdate of zero_flag * null_case_flag * int * IR.PredSymb.path_pos
| Ireturn_from_call of int
instrumentation of heap values
val inst_actual_precondition : inst
val inst_formal : inst
val inst_initial : inst
for formal parameters and heap values at the beginning of the function
val inst_lookup : inst
for initial values
val inst_none : inst
val inst_nullify : inst
val inst_rearrange : bool -> IBase.Location.t -> IR.PredSymb.path_pos -> inst
the boolean indicates whether the pointer is known nonzero
val inst_update : IBase.Location.t -> IR.PredSymb.path_pos -> inst
val inst_new_loc : IBase.Location.t -> inst -> inst
update the location of the instrumentation
type 'inst strexp0 =
| Eexp of IR.Exp.t * 'inst
Base case: expression with instrumentation
*)| Estruct of (IR.Fieldname.t * 'inst strexp0) list * 'inst
C structure
*)| Earray of IR.Exp.t * (IR.Exp.t * 'inst strexp0) list * 'inst
Array of given length There are two conditions imposed / used in the array case. First, if some index and value pair appears inside an array in a strexp, then the index is less than the length of the array. For instance, x |->[10 | e1: v1]
implies that e1 <= 9
. Second, if two indices appear in an array, they should be different. For instance, x |->[10 | e1: v1, e2: v2]
implies that e1 != e2
.
structured expressions represent a value of structured type, such as an array or a struct.
Comparison function for strexp. The inst:: parameter specifies whether instumentations should also be considered (false by default).
Equality function for strexp. The inst:: parameter specifies whether instumentations should also be considered (false by default).
type 'inst hpred0 =
| Hpointsto of IR.Exp.t * 'inst strexp0 * IR.Exp.t
represents exp|->strexp:typexp
where typexp
is an expression representing a type, e.h. sizeof(t)
.
| Hlseg of lseg_kind * 'inst hpara0 * IR.Exp.t * IR.Exp.t * IR.Exp.t list
higher - order predicate for singly - linked lists. Should ensure that exp1!= exp2 implies that exp1 is allocated. This assumption is used in the rearrangement. The last exp list
parameter is used to denote the shared links by all the nodes in the list.
| Hdllseg of lseg_kind
* 'inst hpara_dll0
* IR.Exp.t
* IR.Exp.t
* IR.Exp.t
* IR.Exp.t
* IR.Exp.t list
higher-order predicate for doubly-linked lists. Parameter for the higher-order singly-linked list predicate. Means "lambda (root,next,svars). Exists evars. body". Assume that root, next, svars, evars are disjoint sets of primed identifiers, and include all the free primed identifiers in body. body should not contain any non - primed identifiers or program variables (i.e. pvars).
*)an atomic heap predicate
and 'inst hpara0 = {
root : IR.Ident.t;
next : IR.Ident.t;
svars : IR.Ident.t list;
evars : IR.Ident.t list;
body : 'inst hpred0 list;
}
and 'inst hpara_dll0 = {
cell : IR.Ident.t;
address cell
*)blink : IR.Ident.t;
backward link
*)flink : IR.Ident.t;
forward link
*)svars_dll : IR.Ident.t list;
evars_dll : IR.Ident.t list;
body_dll : 'inst hpred0 list;
}
parameter for the higher-order doubly-linked list predicates. Assume that all the free identifiers in body_dll should belong to cell, blink, flink, svars_dll, evars_dll.
val compare_hpara_dll0 :
('inst -> 'inst -> int) ->
'inst hpara_dll0 ->
'inst hpara_dll0 ->
int
type hpara_dll = inst hpara_dll0
Comparison function for hpred. The inst:: parameter specifies whether instumentations should also be considered (false by default).
Equality function for hpred. The inst:: parameter specifies whether instumentations should also be considered (false by default).
val create_sharing_env : unit -> sharing_env
Create a sharing env to store canonical representations
val hpred_compact : sharing_env -> hpred -> hpred
Return a compact representation of the exp
val is_objc_object : hpred -> bool
val pp_offset : IStdlib.Pp.env -> F.formatter -> offset -> unit
val d_offset_list : offset list -> unit
Dump a list of offsets
val pp_atom : IStdlib.Pp.env -> F.formatter -> atom -> unit
Pretty print an atom.
val d_atom : atom -> unit
Dump an atom.
val pp_inst : F.formatter -> inst -> unit
pretty-print an inst
val pp_sexp : IStdlib.Pp.env -> F.formatter -> strexp -> unit
Pretty print a strexp.
val d_sexp : strexp -> unit
Dump a strexp.
val pp_hpred : IStdlib.Pp.env -> F.formatter -> hpred -> unit
Pretty print a hpred.
val d_hpred : hpred -> unit
Dump a hpred.
val pp_hpara : IStdlib.Pp.env -> F.formatter -> hpara -> unit
Pretty print a hpara.
val pp_hpara_dll : IStdlib.Pp.env -> F.formatter -> hpara_dll -> unit
Pretty print a hpara_dll.
module Env : sig ... end
record the occurrences of predicates as parameters of (doubly -)linked lists and Epara. Provides unique numbering for predicates and an iterator.
val pp_hpred_env :
IStdlib.Pp.env ->
Env.t option ->
F.formatter ->
hpred ->
unit
Pretty print a hpred with optional predicate env
Change exps in strexp using f
. WARNING: the result might not be normalized.
Change exps in hpred by f
. WARNING: the result might not be normalized.
val hpred_list_expmap :
((IR.Exp.t * inst option) -> IR.Exp.t * inst option) ->
hpred list ->
hpred list
Change exps in hpred list by f
. WARNING: the result might not be normalized.
Change exps in atom by f
. WARNING: the result might not be normalized.
val atom_free_vars : atom -> IR.Ident.t IStdlib.IStd.Sequence.t
val atom_gen_free_vars :
atom ->
(unit, IR.Ident.t) IStdlib.IStd.Sequence.Generator.t
val hpred_free_vars : hpred -> IR.Ident.t IStdlib.IStd.Sequence.t
val hpred_gen_free_vars :
hpred ->
(unit, IR.Ident.t) IStdlib.IStd.Sequence.Generator.t
val hpara_shallow_free_vars : hpara -> IR.Ident.t IStdlib.IStd.Sequence.t
val hpara_dll_shallow_free_vars :
hpara_dll ->
IR.Ident.t IStdlib.IStd.Sequence.t
Variables in hpara_dll, excluding bound vars in the body
type subst = private (IR.Ident.t * IR.Exp.t) list
val subst_of_list : (IR.Ident.t * IR.Exp.t) list -> subst
Create a substitution from a list of pairs. For all (id1, e1), (id2, e2) in the input list, if id1 = id2, then e1 = e2.
val subst_of_list_duplicates : (IR.Ident.t * IR.Exp.t) list -> subst
like subst_of_list, but allow duplicate ids and only keep the first occurrence
val sub_to_list : subst -> (IR.Ident.t * IR.Exp.t) list
Convert a subst to a list of pairs.
val sub_empty : subst
The empty substitution.
val is_sub_empty : subst -> bool
Compute the common id-exp part of two inputs subst1
and subst2
. The first component of the output is this common part. The second and third components are the remainder of subst1
and subst2
, respectively.
Compute the common id-exp part of two inputs subst1
and subst2
. The first component of the output is this common part. The second and third components are the remainder of subst1
and subst2
, respectively.
val sub_find : (IR.Ident.t -> bool) -> subst -> IR.Exp.t
sub_find filter sub
returns the expression associated to the first identifier that satisfies filter
. Raise Not_found_s/Caml.Not_found
if there isn't one.
val sub_filter : (IR.Ident.t -> bool) -> subst -> subst
sub_filter filter sub
restricts the domain of sub
to the identifiers satisfying filter
.
val sub_filter_pair : subst -> f:((IR.Ident.t * IR.Exp.t) -> bool) -> subst
sub_filter_exp filter sub
restricts the domain of sub
to the identifiers satisfying filter(id, sub(id))
.
sub_range_partition filter sub
partitions sub
according to whether range expressions satisfy filter
.
val sub_domain_partition : (IR.Ident.t -> bool) -> subst -> subst * subst
sub_domain_partition filter sub
partitions sub
according to whether domain identifiers satisfy filter
.
val sub_domain : subst -> IR.Ident.t list
Return the list of identifiers in the domain of the substitution.
Return the list of expressions in the range of the substitution.
sub_range_map f sub
applies f
to the expressions in the range of sub
.
val sub_map :
(IR.Ident.t -> IR.Ident.t) ->
(IR.Exp.t -> IR.Exp.t) ->
subst ->
subst
sub_map f g sub
applies the renaming f
to identifiers in the domain of sub
and the substitution g
to the expressions in the range of sub
.
val extend_sub : subst -> IR.Ident.t -> IR.Exp.t -> subst option
Extend substitution and return None
if not possible.
val subst_free_vars : subst -> IR.Ident.t IStdlib.IStd.Sequence.t
val subst_gen_free_vars :
subst ->
(unit, IR.Ident.t) IStdlib.IStd.Sequence.Generator.t
substitution functions WARNING: these functions do not ensure that the results are normalized.
val hpara_instantiate :
hpara ->
IR.Exp.t ->
IR.Exp.t ->
IR.Exp.t list ->
IR.Ident.t list * hpred list
hpara_instantiate para e1 e2 elist
instantiates para
with e1
, e2
and elist
. If para = lambda (x, y, xs). exists zs. b
, then the result of the instantiation is b[e1 / x, e2 / y, elist / xs, _zs'/ zs]
for some fresh _zs'
.
val hpara_dll_instantiate :
hpara_dll ->
IR.Exp.t ->
IR.Exp.t ->
IR.Exp.t ->
IR.Exp.t list ->
IR.Ident.t list * hpred list
hpara_dll_instantiate para cell blink flink elist
instantiates para
with cell
, blink
, flink
, and elist
. If para = lambda (x, y, z, xs). exists zs. b
, then the result of the instantiation is b[cell / x, blink / y, flink / z, elist / xs, _zs'/ zs]
for some fresh _zs'
.
val custom_error : IR.Pvar.t